## URAdapt

Managing Water at the Urban-Rural Interface: The key to climate change resilient

## Dynamics of urban-rural interaction in relation to water and waste water

**Tadesse Sinshaw** 

Addis, 29 May 2012



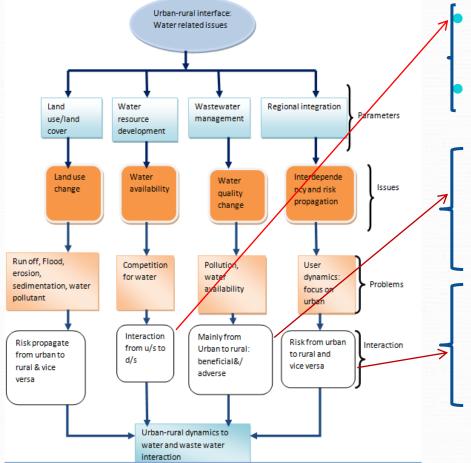




## Table of content

- Theoretical framework
- Study area
- Challenges and opportunities on interaction
  - Land use change
  - Water resource development
  - Waste management
  - Regional integration
- Conclusion & Recommendations

## **Theoretical framework**


- Urban-rural: geographically interconnected areas
- Economic, social and political interaction
- Urban-surrounding rural areas

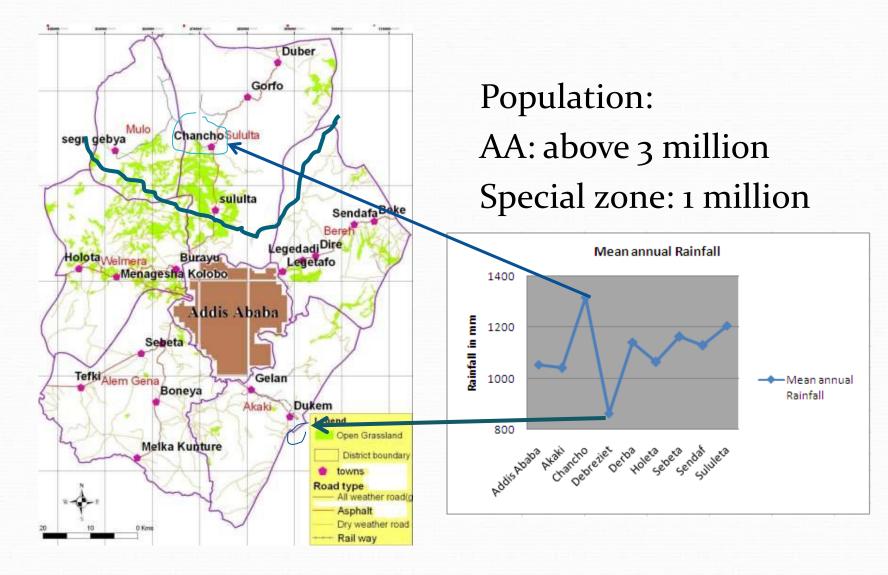
| Rural                         | Urban                                  | Interaction                                       |
|-------------------------------|----------------------------------------|---------------------------------------------------|
| Livelihood:<br>Agriculture    | Labour market,<br>trade                | Migration                                         |
| Natural capital:<br>Key asset | Housing: key<br>economical<br>resource | Informal<br>settlement                            |
| Favourable<br>environment     | Reliance on cash                       | Urban<br>encroachment<br>Competition for<br>water |

## **Theoretical framework**

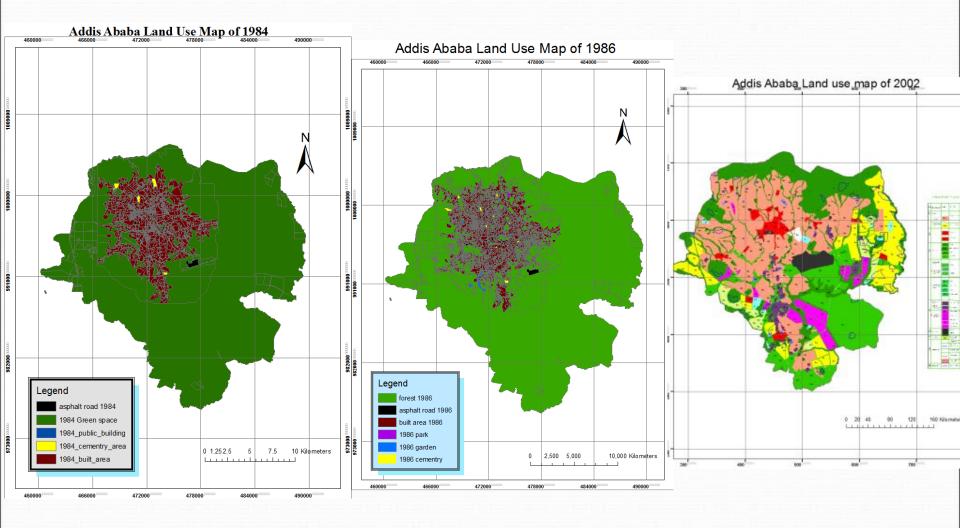
- Hydrological linkage is a main feature in neighbourhood
- Regional cooperation: sustainability->regional planning based on wider perspective
- Issue: Managing the water resource with out regional cooperation

## **Theoretical framework**



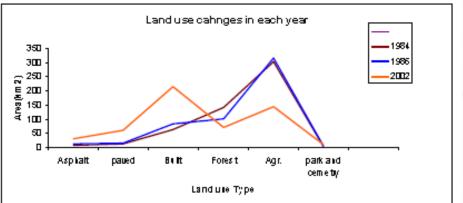

U/s abstractions rise->decrease flow to D/s users Depends on urban location

Urban waste->peri urban & rural Agricultural waste->urban Beneficial or harmful interaction


Interdependency on natural resource

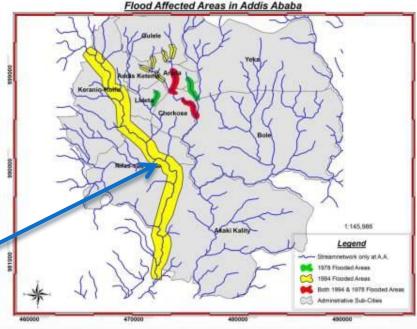
Common interests->competitive

Study area

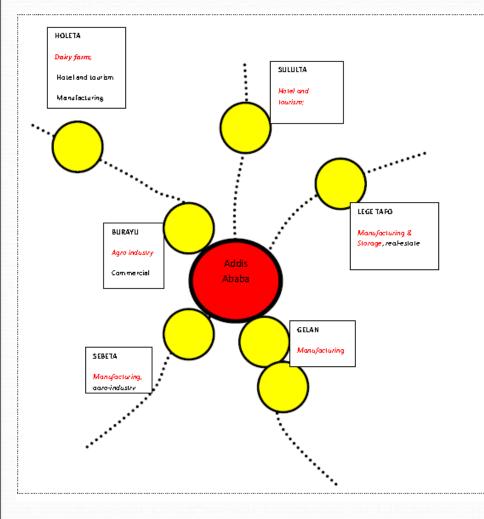



## A. Land use changes: Addis Ababa



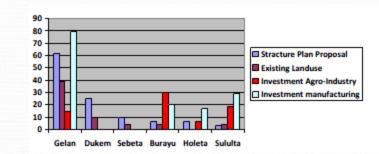

## Land use change of AA

| Year | Total         | Land use Type |           |                     |                             |                    |          |  |  |
|------|---------------|---------------|-----------|---------------------|-----------------------------|--------------------|----------|--|--|
|      | Area<br>(km²) | Imperv        | ious Area |                     | Pervious Area               |                    |          |  |  |
|      |               | Asphal        | Paved     | Built               | Forest Agriculture Cemetery |                    |          |  |  |
|      |               | (km²)         | (km²)     | (kan <sup>2</sup> ) | (kan <sup>2</sup> )         | (km <sup>2</sup> ) | and park |  |  |
|      |               |               |           |                     |                             | $\frown$           | $(km^2)$ |  |  |
| 1984 | 517.87        | 4.72          | 11.16     | 60.15               | 139.023                     | 301.7              | 1.09     |  |  |
| 1986 | 517.87        | 10.734        | 12.864    | 80.173              | 98.062                      | 314.67             | 1 38     |  |  |
| 2002 | 517.87        | 27.704        | 57.358    | 212.733             | 68.717 (                    | 142.87             | 8.43     |  |  |




Increased downstream flooding and inundation area

- Run off potential increased
   1984: 0.28 2002: 0.45
- 50 % agricultural land is urbanized




## Land use changes: Special zone Urbanization



#### Land use types

- Southern towns: Heavy industrial growth
- Northern :Agro industries and recreation



## Land use changes: special zone



## Land use changes: special zone

| Land use/cover type   |        | Year Are | ea_ha  | Gross change in ha |            | Change in percentage |                |               |               |
|-----------------------|--------|----------|--------|--------------------|------------|----------------------|----------------|---------------|---------------|
|                       | 1960   | 1980     | 2008   | 1980s-1960s        | 2008-1980s | 2008-1960s           | 1980s to 1960s | 2008 to 1980s | 2008 to 1960s |
| Cultivated land       | 275644 | 296987   | 315557 | 21343              | 18570      | 39913                | 7.74           | 6.25          | 14.47         |
| Grass land            | 53130  | 50200    | 34311  | -2930              | -15889     | -18819               | -5.83          | -31.65        | -54.84        |
| water reservoir       | 1387   | 1919     | 937    | 532                | -982       | -450                 | 38.35          | -104.8        | -48           |
| Inundated land        | 2482   | 2570     | 4862   | 88                 | 2292       | 2380                 | 3.54           | 89.18         | 48.95         |
| Dense bush and shrub  | 8576   | 7495     | 1905   | -1081              | -5590      | -6671                | -14.42         | -293.43       | -350.18       |
| Sparse bush and shrub | 32329  | 28125    | 29415  | -4204              | 1290       | -2914                | -14.94         | 4.58          | -9.9          |
| Settlement            | 10160  | 12631    | 40842  | 2471               | 28211      | 30682                | 24.32          | 223.34        | 301.98        |
| Natural forest        | 3293   | 3333     | 3648   | 40                 | 315        | 355                  | 1.21           | 9.45          | 10.78         |
| Plantation forest     | 3801   | 10294    | 23629  | 6493               | 13335      | 19828                | 170.82         | 129.54        | 521.65        |
| Bareland              | 103144 | 83687    | 41323  | -19457             | -42364     | -61821               | -23.24         | -102.51       | -149.6        |
| River bed             | 3867   | 547      | 1152   | -3320              | 605        | -2715                | -606.94        | 110.6         | -235.67       |
| Flower farm           | NA     | NA       | 283    | NA                 | NA         | 283                  | NA             | NA            | NA            |
|                       |        |          |        |                    |            |                      |                |               |               |

# In a nutshell, the dynamics of interaction due to land use change

- AA urbanization-> increased frequency and extent of downstream floods (Akaki Wereda)
- Consequence in :
   Loss of property & life
   Cost of Adaption
- Increase land use change from the special zone intensive cultivation >Hydrological regime change
  - Sedimentation to Gefersa, Legedadi and Dire
  - Water qualitfy from pesticides, fertilizers , etc

## B. Water resource development

Major water users & abstractions <u>Addis Ababa -></u>

Commercial, domestic, industrial Existing supply: 280,000 m3/day Required->479,000 m3/day 40% deficit->

- Legedadi reservoir->165,000 m<sup>3</sup>/day
- Gefersa reservoir->30,000 m<sup>3</sup>/day
- Akaki well field & intercity wells->85,358 m<sup>3</sup> /day

## Water resource development

#### **Surrounding areas**

Drinking water supply Population: 1 million Rural coverage: 60% Urban coverage: 56%

- Deep wells
- Shallow wells
- Springs

Yield varies from 5 to 25 l/s

| Turse of scheme   | Total |
|-------------------|-------|
| Type of scheme    | Total |
| Deep well         | 75    |
| Shallow well      | 83    |
| Spring gravity    | 12    |
| Pumped spring     | 6     |
| Spring on spor    | 96    |
| Pumped spring     | 288   |
| Surface(Legedadi) | 1     |
| Total             | 561   |

#### Water resource development Water supply coverage

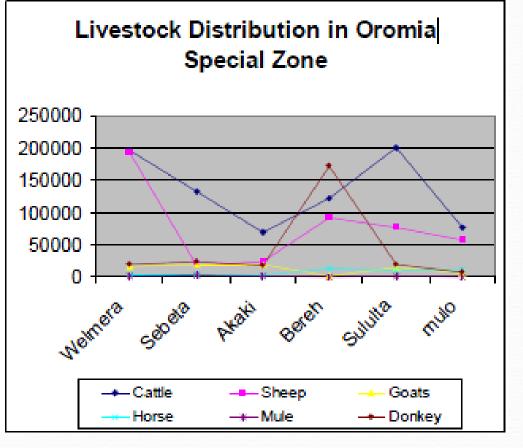
| No | Name of Wereda | 2011 population | 2011 WS pop | % coverage |
|----|----------------|-----------------|-------------|------------|
| 1  | Mullo          | 47,217          | 27,858      | 59         |
| 2  | Sululta        | 137,637         | 92,079      | 67         |
| 3  | Bereke         | 115,270         | 78,776      | 68         |
| 4  | Akaki          | 82,138          | 43,533      | 53         |
| 5  | Sebeta Awas    | 142,344         | 62,631      | 44         |
| 6  | Welmara        | 94,417          | 64,676      | 69         |
| _  | Total          | 619,023         | 369,553     | 60         |

| No | Name of Town      | 2011 population | 2011 WS pop | % coverage |
|----|-------------------|-----------------|-------------|------------|
| 1  | Chancho           | 18,730          | 10,670      | 5          |
| 2  | Sululta           | 29,727          | 20,400      | 68         |
| 3  | Legetafo legedadi | 18,892          | 5,800       | 30         |
| 4  | Sandafa Bereke    | 25,901          | 17,300      | 66         |
| 5  | Galan             | 20,687          | 15,500      | 74         |
| 6  | Dukum             | 28,917          | 15,200      | 52         |
| 7  | Sabata            | 102,791         | 50,951      | 49         |
| 8  | Holeta            | 40,097          | 26,310      | 65         |
| 9  | Burayu            | 103,090         | 47,110      | 45         |
|    | Total             | 388,832         | 209,241     | 50         |

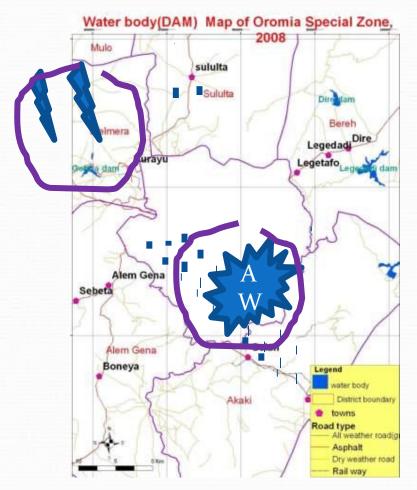
#### Extraction

- PCD based on national standard
- Rural 15 l/day
- Towns 20 l/day
   Total extraction= 17000 m3/day
   Private industries and commercial centres????

## Water resource development


Agricultural water use: smallholders, private investors

- 315,517 ha cultivated land
- 95% smallholder farmers subsistence
- Traditional agricultural systems
- Most use their own farm seed: lower water productivity
- Fertilizer->blanket application->with out soil fertility test, extent of yield, crop & climate specific
- 312ha flower farm


## Water resource development

#### **Livestock Watering**

- Abundant livestock population
- estimated 792087
- Source of drinking: rivers, springs, ponds and swamps
- Intermittent rivers/ponds: dry season shortage



## Water use maps

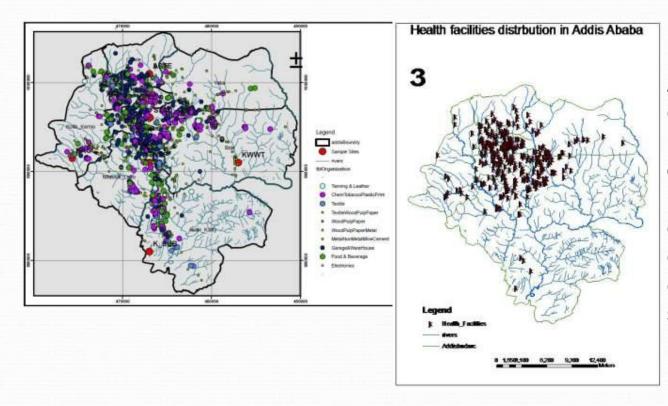


 Growing Industrial and commercial water demand in Akaki compet with Akaki well field

Ground water based interaction

**Different Sources of Water for Different** 

### Purposes – Rural and Urban (Percentage)


| Source of<br>water | Drinking |       | Cooking |       | Cleaning |       | Livestock |       |
|--------------------|----------|-------|---------|-------|----------|-------|-----------|-------|
|                    | Rural    | Urban | Rural   | Urban | Rural    | Urban | Rural     | Urban |
| River              | 29.1     | 15.1  | 30.9    | 14.9  | 45.2     | 24.5  | 59.4      | 22.3  |
| Pond/Lake          | 12.4     | 3     | 12.3    | 3.2   | 14       | 4.1   | 16        | 4.6   |
| Hand dug<br>well   | 17.6     | 9     | 17.6    | 10.1  | 15.7     | 11.4  | 12.6      | 2.9   |
| Developed spring   | 22       | 2.7   | 22      | 2.6   | 14.2     | 2.4   | 6.2       | 2.9   |
| Piped water        | 18.8     | 70.2  | 17.4    | 69.2  | 10.9     | 57.6  | 6.2       | 2     |
| Not using          | 0        | 0     | 0       | 0     | 0        | 0     | 0.5       | 57.7  |
| Open<br>surface    | 41.5     | 18.1  | 43.2    | 18.1  | 59.2     | 28.6  | 74.4      | 26.9  |

## In summary

- Increased water demand for common water resources
- Increased water development from the same water sources
- Increasing water consumption by the communing people from the surrounding and vice versa interaction
- Likely competition for the common resources will rise

## C. Waste water management

Domestic, industrial, commercial and agricultural wastes



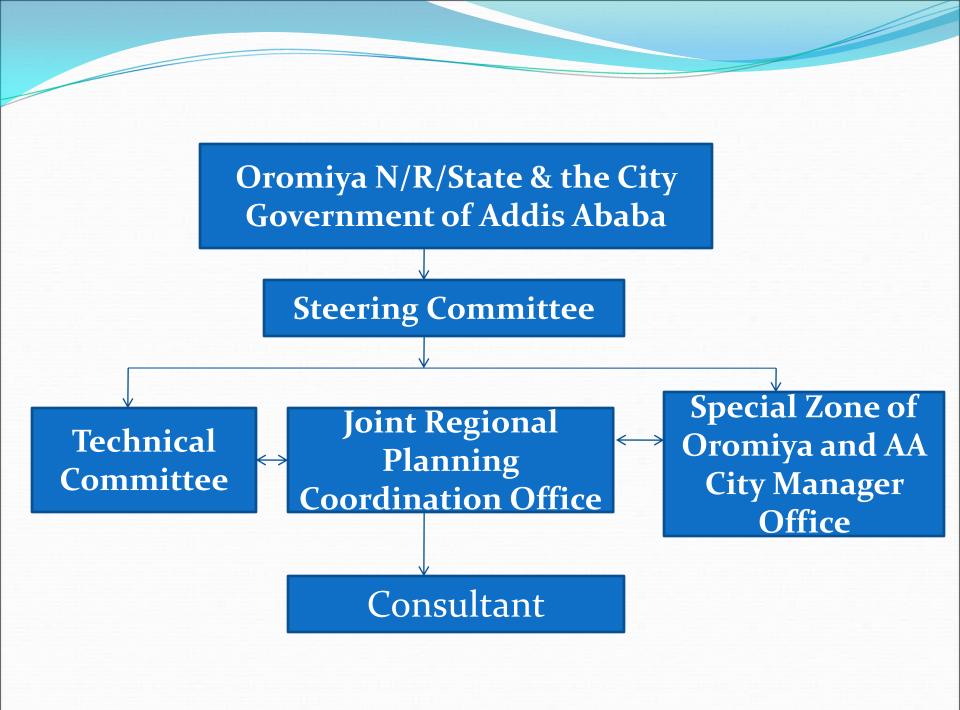
Open space disposal Addis: 7% sewage collection and disposal
90 % industries with out treatment plant
BOD and total coliform examination results exceeds the WHO environmental standards

## Waste water management

- Agricultural wastes: Fertilizer and pesticides Nitrates->health risk->sometimes cancer
- Pesticides: can contaminate water by volatilization, leaking, and runoff.
- Floriculture activities ->different types of waste ->dangerous to health

## Waste

#### Risk


- Irrigation practiced with out ensuring the suitability of water for crop and health
- Flood spread pollutant to farm land and grazing land->livestock health risk

#### **Opportunities**

- Water demand rise->reallocate to urban->limit water for agriculture
- Waste water->Readily available water
   ->Reduce fertilizer cost

## **D.** Regional integration

- Regional planning focused on administrative boundary, not hydrological boundaries
- Undesirable effect from urban to rural and vice versa as stated above
- Addis entirely depend on Special zone on water resources
- The water resource is a common source
- Formal agreement not established between AA & SZ
- Some instances: AAWSA and Gerefersa forest plantation



## Conclusion

- AA->Rapid urbanization->Flood risk propagation
- SZ-Cultivation increased severely->sedimentation to AA Reservoirs
- Dependency of SZ domestic Ground on ground water->little interaction with AA supplies.
- Akaki well field vs Akaki Wereda Ground water competition
- Welmera Wereda flora farms vs Gefersa resevoir
- Poor urban and aricultural waste Collection & diposal

## Recommendations

- Promoting positive two-way interactions reciprocal relations between rural and urban areas
- promote a more balanced use of natural resources such as water
- Recycling urban wastewater for rural agriculture, after ensuring that its quality is suitable for crops and human health

**\****Act on the governance mechanisms*