URAdapt

Managing Water at the Urban-Rural Interface: The key to climate change resilient cities

Mainstreaming Climate Change Issues - the impact of climatic and non-climatic drivers on Addis Ababa Water Supply and Waste Water System

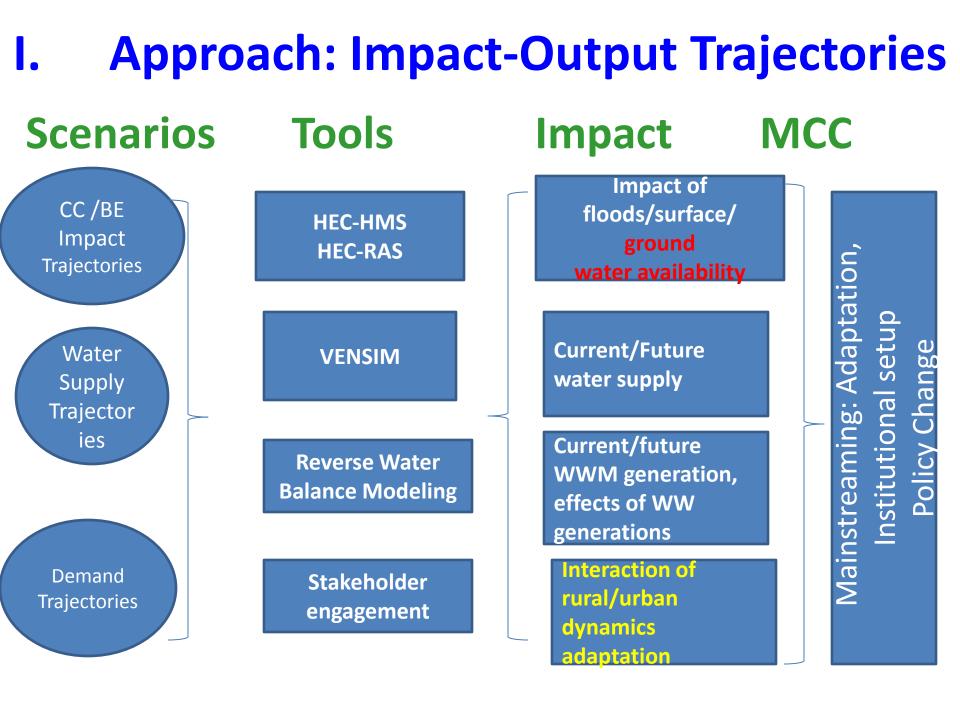
Addis, 29 May 2012

Mainstreaming Climate Change Issues - the impact of climatic and non-climatic drivers on Addis Ababa Water Supply and Waste Water System

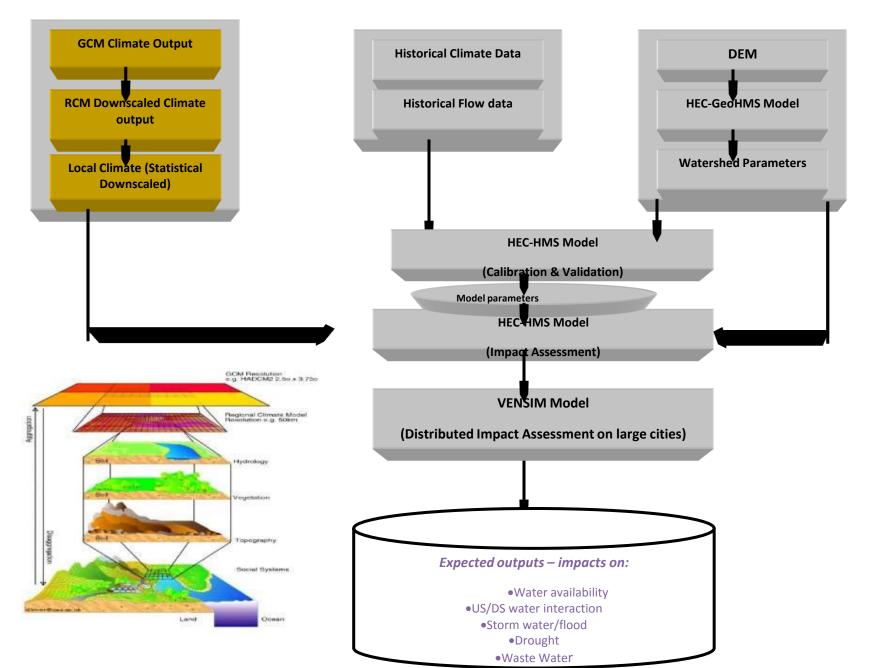
Main Research Team for this sub-project:

Dr. Semu Ayalew Moges and Geremew Sahilu

Involved Students:


Mengistu Teklemariam, Abayneh Alemu, Getahun Habtamu, Ibrahim Adem, Endalkachew Girma, Asaye,

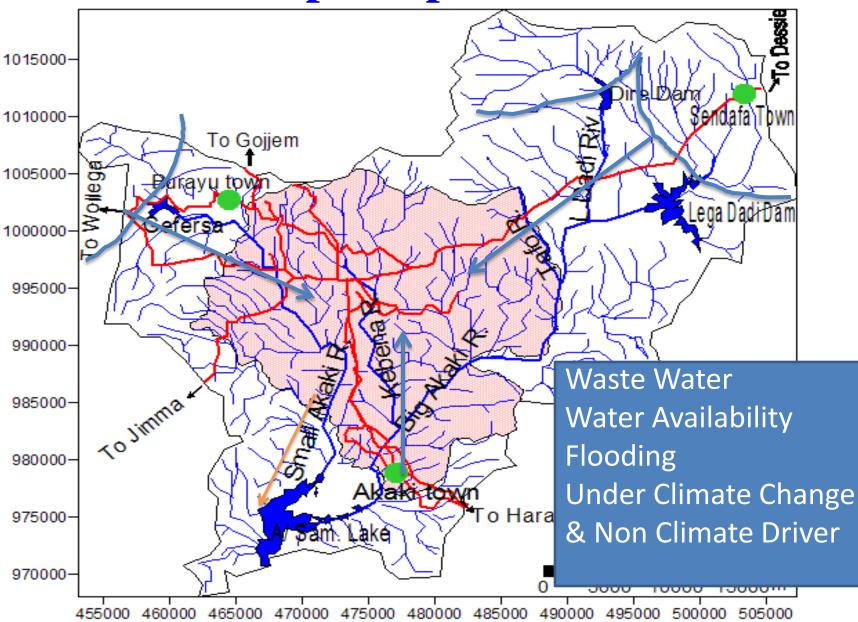
Others Students:


Some other students will come on board

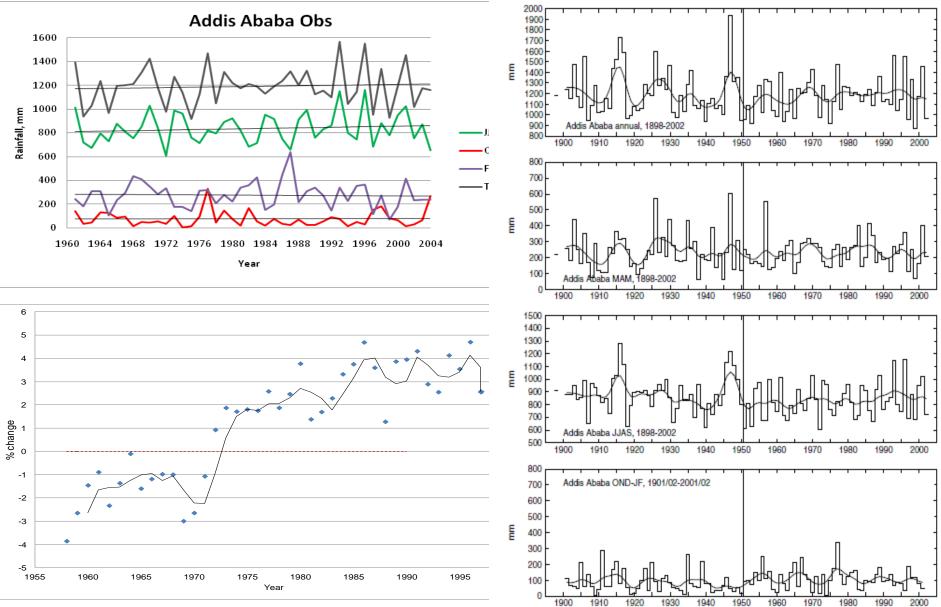
International lead and Collaborator:

Dr. Liqa (IWMI West Africa)

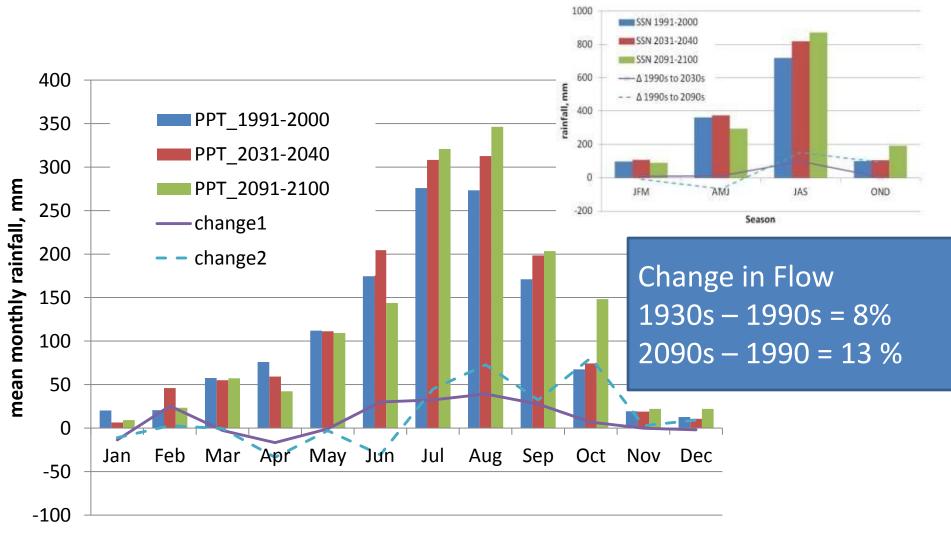
I. Approach: Impact-Output Trajectories



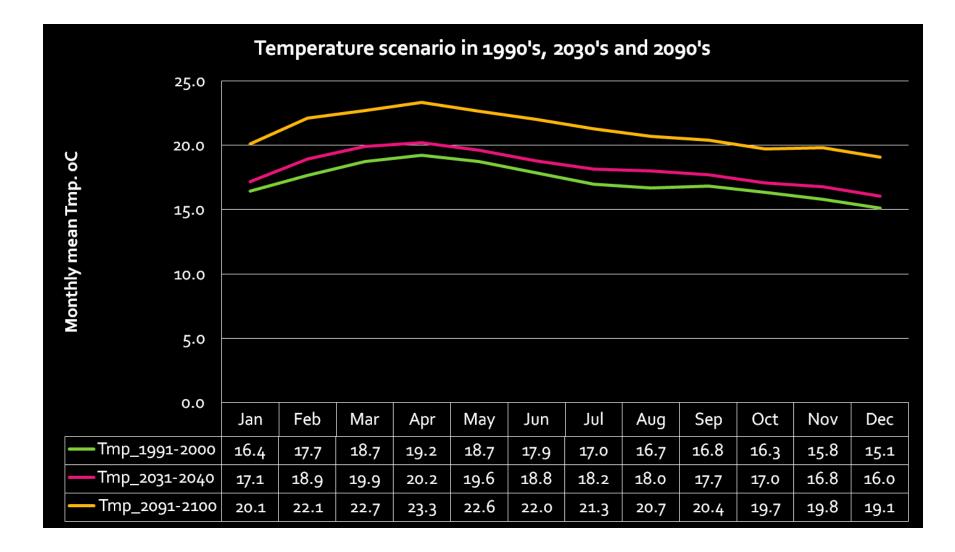
I. Approach: Change/Impact Drivers


1. Climatic Drivers

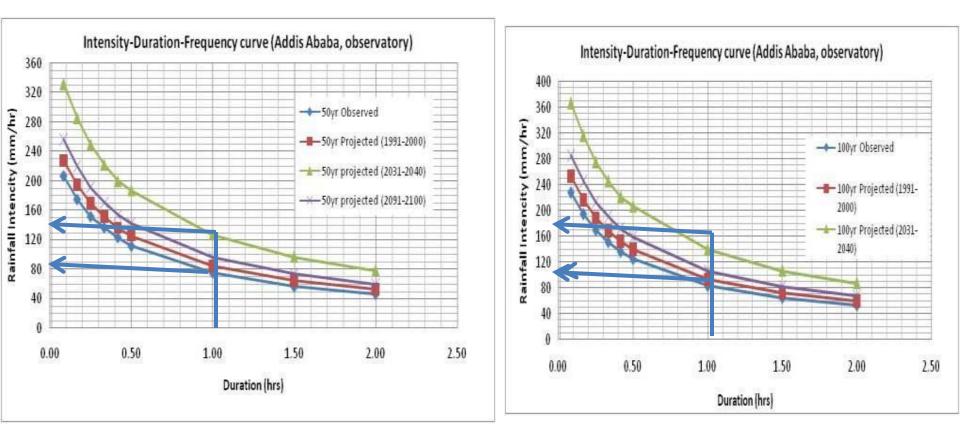
- Precipitation change
- Temperature change
- 2. Non-Climatic Drivers
 - Built Environment Change


I. Approaches: Study Description/problems

II. Climate Change Driver a. Observational Evidence



II. Climate Change Driver b. Model Output: Rainfall Change



month

II. Climate Change Driver d. Model Output: Temperature

III. Climate Change Driver a. Impact on Intensity & Flooding - Kebena

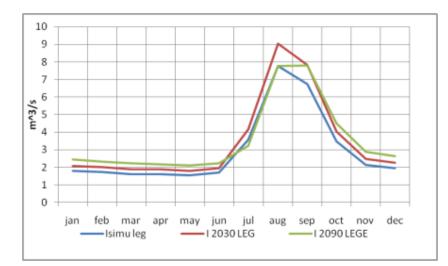
III. Climate Change Driver

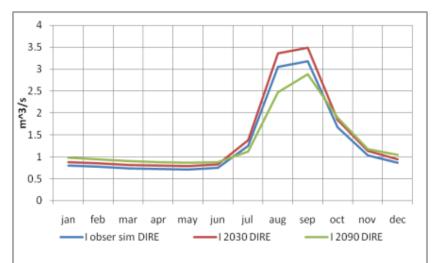
a. Impact on Intensity & Flooding - Kebena

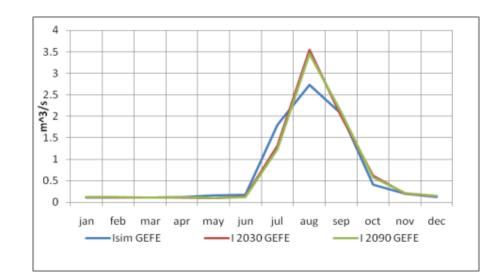
	24-Hour-Depth-Frequency					
Return	Observed	Proje	ected			
Period	1991-2000	2031-2040	2091-2100			
2	46.37	/ 61.16	52.19			
5	54.67	774 📉	62.39			
10	60.16	82.51	69.14			
25	67.1	93.25	77.67			
50	72.25	101.23	84			
100	77.36	109.14	90.29			

On average the flood extremes will likely increase by 37 % in 2030s and 15 % in 2090s Which means, 10 yrs T flood in 2030s

III. Climate Change Driver a. Impact on Intensity & Flooding - Kebena

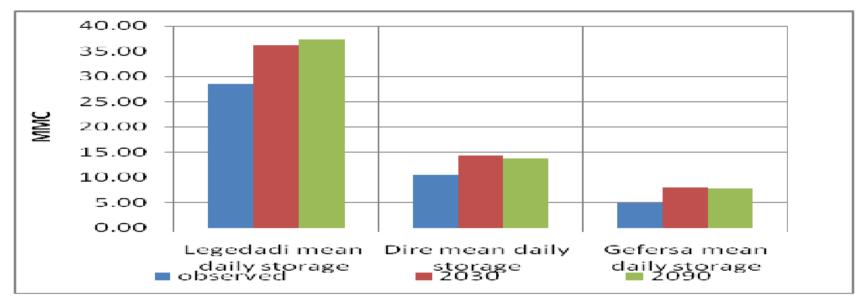

Obser	ved	Projected				
1991-2	1991-2000		2031-2040		2100	
Return Period	Risk	Return Period	Risk	Return Period	Risk	
2	75	11	99	4	92	
5	67	68	100	13	95	
10	65	200	100	32	96	
25	64	869	100	104	98	
50	63	2582	100	246	100	
100	63	7602	100	580	100	


III. Climate Change Driver a. Impact on Intensity & Flooding - Kebena


- 10 years return period flood in 1990s is equivalent to 2 years return period of flood in 2030s and is about 4 years return period of flood in 2090s
- 50 years return period flood in 1990s is equivalent to less than 5 years return period of flood in 2030s and about 10 years return period of flood in 2090s
- 100 years return period flood in 1990s is equivalent to less than 10 years return period of flood in 2030s and it is only about 25 years return period of flood in 2090s

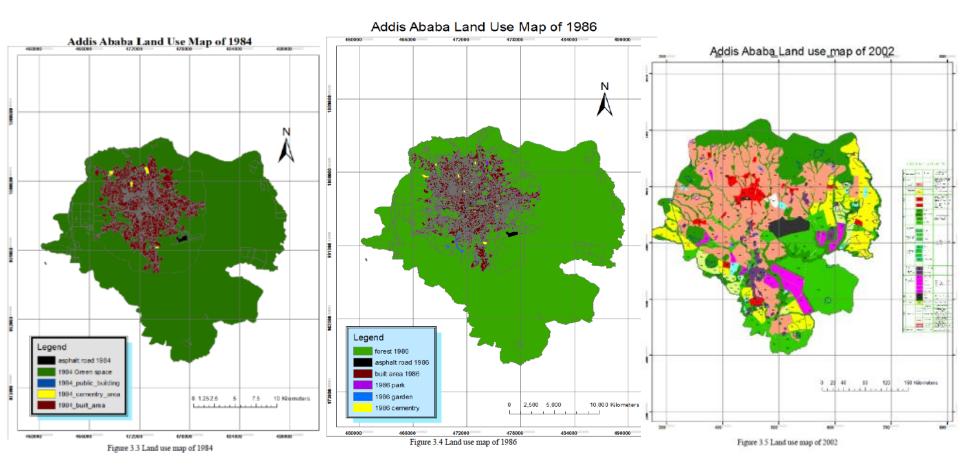
Re-thinking Urban Drainage Infrastructure design guidelines to be modified/reviewed

III. Climate Change Impact b. Impact on Water Availability – Inflow to Reservoirs

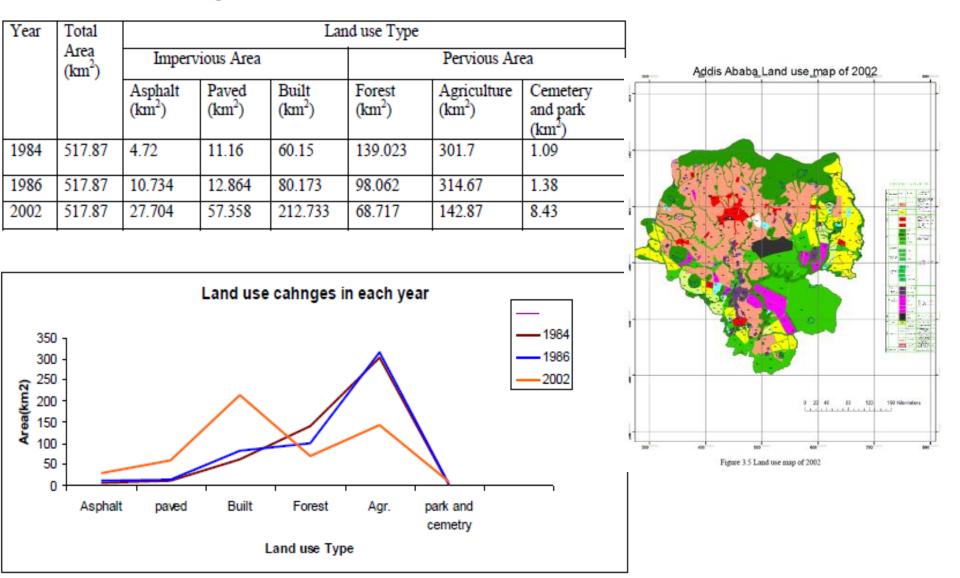


Dam	Inflows		% use	% CC	
	m3/s	MCM		2030s	2090s
Legedadi	2.9	91.0	50.9	+15.8	+14.8
Dire	1.2	37.0	41.4	+9.0	+3.0
Gefersa	0.7	21.5	49.6	+5.0	+3.8

III. Climate Change Impact c. Impact on Water Availability – Storage



Dam	Inflows		% CC		
	m3/s	MCM	2030s	2090s	
Legedadi	2.9	91.0	+20.9	+19.2	
Dire	1.2	37.0	+26.5	+23.8	
Gefersa	0.7	21.5	+37.8	+37.6	


III. Climate Change Impact d. Impact on Water Availability

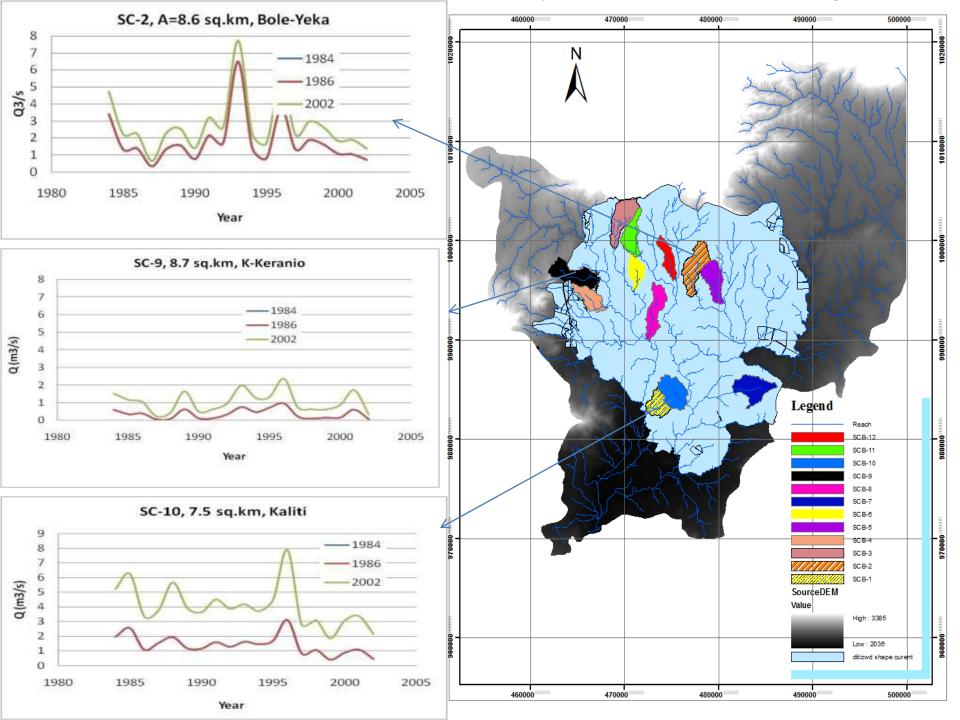
- The increase in water availability from the inflow and storage reservoir is a good news to Addis Ababa
- But because AA sits at the head water system (small water sources) in general it is not enough to offset the growing demand requirement beyond 2020s
- Ground water availability was not considered in this study

IV. Non-Climate Drivers Expansion of Built Environment

IV. Non-Climate Drivers: Expansion of Built Environment

IV. Non-Climate Drivers: Change in the Built Environment

	Landuse	Asphalt	Paved	Built	Forest	Agriculture	Cemetery
	type						and park
1984	Area(km2)	4.716	11.155	60.146	139.023	301.7	1.09
	Area (%)	0.91	2.15	11.61	26.85	58.26	0.21


	Land use	Asphalt	Paved	Built	Forest	Agriculture	Cemetery
1986	type						and park
1300	Area(km2)	10 734	12.864	80 173	98 062	314 666	1.375
	Area (%)	2.07	2.48	15.48	18.94	60.76	0.27

	Land use	Asphalt	Paved	Built	Forest	Agriculture	Cemetery
2002	type						and park
	Area(km2)	27.704	57.358	212.733	68.717	142.870	8.425
	Area (%)	5.35	11.08	41.08	13.2	27.60	1.63

IV. Non-Climate Drivers: The Impact : Increased Flood and Runoff

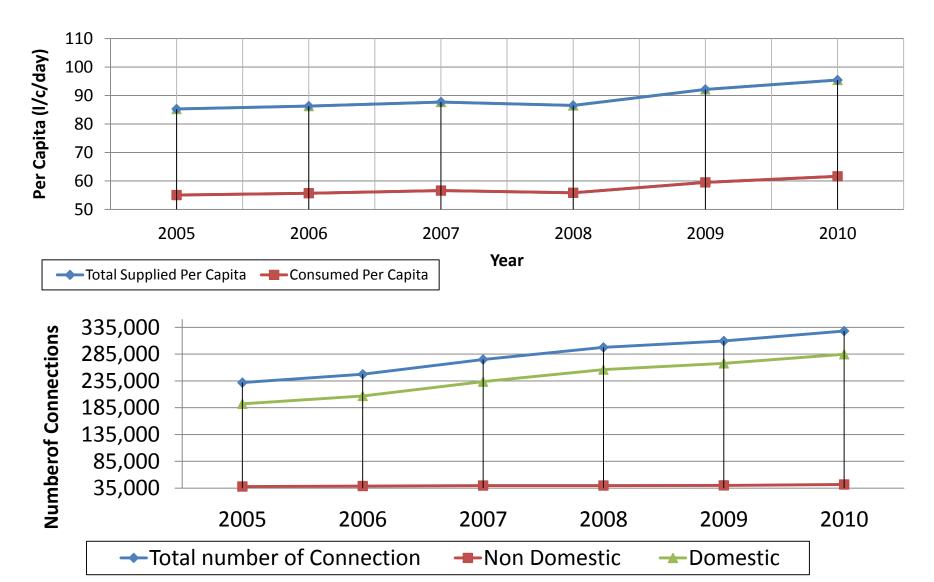
i. Runoff Volume

Land use period	Annual Average Rainfall (mm) (1984-2002	Annual Average Runoff (mm)	Annual Average Runoff (MCM)	Runoff Coefficient (R.C.)	% Runoff Volume Increase
1984	791	221.4	114.7	0.28	
1986	791	239	123.8	0.30	7.90
2002	791	358.4	185.6	0.45	61.9
2010	????	????	????	????	????

IV. Non-Climate Drivers: The Impact : Increased Flood and Runoff

• Flooding

- Volume and peak of flood will enormously increased due expansion of impervious surfaces (increased built environment)
- This affects not the Intensity-Duration-Frequency (IDF) relationships like CC
 - but the flood peak-duration-frequency relationship (QDF) change will be significantly affected
 - additional issue necessitating Urban Infrastructure design Guideline to be changed
- Compounded with climate change increases, the risk to city drainage infrastructure and the city as a whole will
 - Need to incorporate the CC or Non-CC impacts in infrastructure development


Some Associated Risks

- Existing Drainage infrastructures may not cope with the situation
- Flooding may affect vulnerable communities
- Regular inundation of Street/blockage
- Water Supply Deficit increase is highly associated to demand increase
- Waste water treatment will be affected (higher T)
- Downstream communities will be affected

V. Water Supply-Water Demand a. Water Supply

- Increase Water Demand and shortfall water supply
 - •Water Supply (2010 G.C) 300000 m3/d
 - •Projected Water Demand (2009 G.C) 454,208 m³/d
 - Current shortfall of water supply(2009) -192,208 m³/ d
 Deficit/shortfall in 2009 = 42%
 - •Deficit/shortfall in 2010 = 34%
 - Projected Water Demand (2040)- 2,706,088 m³/ day, a 16% an increase annually for the next 30 years
 Significant Shortfall by 2040

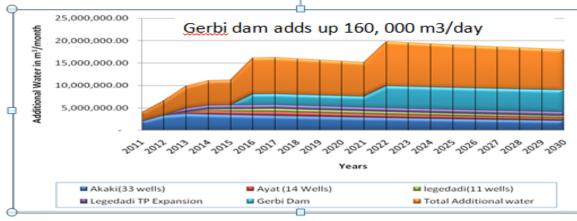
V. Water Supply-Water Demand a. Water demand increase

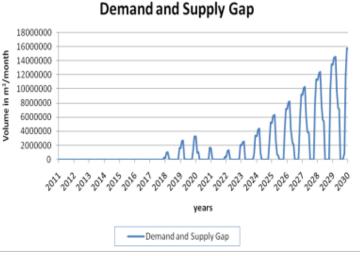
V. Water Supply-Water Demand a. Water demand increase

- The current non-revenue water (NRW) level in the city of Addis Ababa is 38.2Million m³/year (39.5% system input volume)
 - Potential economically recoverable volume is about 25% of the water total loss
- -Climate change (temperature) may increase demand

V. Impact On Water Supply-Demand: b. Water Demand

- Climate Change (T) significantly increase water demand in the city as well as U/S of the city
- Expansion of Built Environment significantly increase per capita consumption and total water demand due to
 - i) population increase, ii) increasing wellbeing and iii)
 Temperature, iv) water distribution increase


V. Impact On Water Supply-Demand Balance


		Reme	dial Action(%)ii	n their Consumptic	ons		
Type of Consumer	Consumption %	Self supply	Water use manageme nt and wastewater reuse	Use rain Water	Leakage reductio n	Total (%)	Additional Gain water from total supplied (%)
Domestic Use	40.344		10	20		30	12.1032
Non Domestic Use	17.656		20	5		25	4.414
Higher Consumer	14.00	30	5	1		36	5.04
Industrial Use	8	10	5	20		35	2.8
Leakage	20				50	50	10
Total	100	5	8.7	10.7	10		34.4

Short term Water Supply Source: ground water (2011-2015)

Well field Site	Potential in m3/day	Exportable Potential in %	Net Supply in m3/day	Average safe yield of Wells(1/se)
Akaki	223,200	90	200,880	60
Avat	100,000	80	80,000	30
Legedadi	100,000	100,000 80		30
Total Supp	ly from Gro	360	,880.00	

Medium Term Water Supply Source Development Plan (2016-2025)

AA will have critical water shortage after 2023 Distance water supply is an option (e.g. Sibilu or other sources

VI. Impact On Waste Water

- Demand increase is related to waste water increase (80% becomes waste water)
- Climate Change (T) may significantly increase water demand thereby enhncing waste water generation
- Expansion of Built Environment significantly increase per capita consumption and total water demand enhancing also waste water generation

V. Suggestions to future Adaptation

1. ADAPTATION TO FLOOD IMPACTS

- Technical
 - Re-evaluation of design guidelines of drainage structures for new infrastructures
 - Regular maintenance and monitoring of existing infrastructures and retaining walls after flood season

Institutional

- Reinforcing Institutional setup that deals with "flood and drainage" – NEED DEPARTMENT FOR FLOOD & DRAINAGE
- Develop best management plans that focuses more on flood absorbing than flood removing (IUFM) – though distributed beneficial ponds, infiltration galleries, green area. WH

V. Suggestions to future Adaptation

2. ADAPTATION TO WATER SUPPLY DEFICIT

- In the medium term, sustained investment is required
 - Improving water conservation and management practices and developing regulatory frameworks
 - E.g. large buildings such as Condos, Hotels, and real State Apartments can have water harvesting structures
 - Tapping on the potential of runoff generated in the city –
 Distributed Runoff Harvesting (more than 100 MCM)
 - Developing the planned additional water sources
 - Gerbi dam, additional wells
- In the long term, Bold Investment is required
 - Distance Water Supply development

V. Suggestions to future Adaptation

• Waste Water Increase:

- Use of Water conservation Facilities
- Distributed treatment systems and water recycling
- Considering to liaise with downstream communities to provide treated water for their agriculture
- Promote industries using the slug (as fertilizer) and (treated waste water) for production of feeds

Planned Additional Studies from University side

- Assessment of Distance Water Supply
- Assessment of CC on ground water
- What does the City and AAWSA expects and how does we enhance collaboration in the future??

Thank You