Downscaling Climate Change AA area to Assess Climate change impacts on Availability and Extreme hydrological condition

> Semu Ayalew Moges and Abayneh Alemu URAdapt 2nd Platform Workshop 5th August, 2010, ILRI Campus, Addis Ababa

Background: economic

Income Variability trails rainfall variability in Ethiopia

Source: World Bank 2006e.

I. Background and Context: Projected climate Change

- Composite (average of 19 GCMs) percentage change (%) in rainfall relative to 1961-1990 normal for A1B emission scenario
 - A small increase in annual precipitation

2030

2050

- the mean annual temperature will increase in the range of 0.9 -1.1 °C by 2030,
- in the range of 1.7 2.1 °C by 2050

in the range of 2.7-3.4 °C by 2080

Objective of the Study

Future climate change Scenario for Addis Ababa and Surrounding areas

$\square \text{ GCM} \rightarrow \text{RCM} \rightarrow \text{LOCAL MODELING}$

- Water availability from surrounding Rivers under various climate change scenarios
- Extreme hydrological conditions including flooding (flood areas and extent) under various CC scenarios
 HEC-HMS CALI/VERIFICATION -> RUNOFF OUTPUT UNDER DIFFERENT CC SCENARIO

Study Area, Addis Ababa and

Rainfall and temperature

Methodology Regional Downscaling (RegCM₃) RwgCM₃

Methodology: Climate Change Impacts

Predicting impacts of climate change

Emissions

Concentrations CO₂, methane, sulphates, etc. Scenarios from population, energy, economics models

Carbon cycle and chemistry models

Global climate change Temperature, rainfall, sea level, etc.

Coupled global climate models

Regional detail Mountain effects, islands, extreme weather, etc.

Regional climate models

Impacts Flooding, food supply, etc.

Impacts models

RegCM3 Modeling System

Data Required to Run the Model

* data are available at http://www.ictp.trieste.it/~pubregcm/RegCM3

Historical Climate Data	DE	М
Historical Flow data	HEC-Ge Mod	oHMS del
	Water Param	shed eters
HEC-HMS (Calibration &	Model Validation)	
Model paramet		
HEC-NMS I	Model	
(IIIIpact Asse	ssmenty	
VENSIM N	lodel	

Expected outputs – impacts on:

large cities)

•Water availability

•US/DS water interaction

•Storm water/flood, Drought, Waste Water,

Health

Results

- The model provides future scenario output for surface and atmospheric parameters
 - Precipitation
 - Temperature (mean, max and minimum)
 - Relative humidity
 - The wind speed at 10 m

Previous Study output(Conway, 2004)

• 2. Annual and seasonal miniful in Addis Ababa, 1898 to 2002 with 10 year filter applied to annual series. Vertical fine highlights start of AAO record.

Precipitation

monthly rainfall, mm

month

Seasonal Precipitation

month

Seasonal rainfall

Result shows

- Highly likely increase of rainfall during the rainy season (July-August-September) consistently in 2030s and even in 2090's
- Significant reduction of rainfall during season April-May-June
- Significant increase of rainfall during the seasons of Oct-Nov-Dec
- In terms of annual volume, there will increase of total rainfall annualy

What does it mean?

- Likely increase of flooding and community vulnerability to flood damage?
- Likely change the way we design our drainage structures

Need multi-descipilinary professions in the detection of impacts
 Need multi-disciplinary profession in the response

Monthly Temperature

month

Seasonal Temperature

Monthly mean Tmp. oC

Temperature scenario in 1990's, 2030's and 2090's

Remarks about Temperature

- Consistent increase of temperature as predicted by IPCC – 0.370c/dekad
- Relatively no much change in terms of seasons
- What does it mean in terms of real life on the ground????
 - Movement of malaria to highland areas like Addis Ababa
 - More water consumption

- More energy consumption
- Change in biota of the study area

Impact assessment of water
availability - using
hydrological model

A case of Akaki catchment

Addis Catchment

Metrological data - preciptation

Monthly Average Rain Fall for years of 1997-2004

HEC-HMS Configuration

Physical Characteristics of the sub-Catchments

Name of sub catchment	Area (km^2)	Slope (%)	L (km)	Lc (km)
SUB-1	165.97	17	11.6	10.57
SUB -2	225.97	15	11.55	10.03
SUB-3	241.19	15	24.7	9.5
SUB -4	80.55	15	1.1	7.26
SUB -5	97.14	31	9.73	12.28
SUB -6	204.38	13	21.78	13.23
SUB-7	98.73	29	3.92	7.04
SUB-8	26.65	25	9.12	4.74
SUB-9	104.05	24	8.35	22.22
SUB-10	174.83	21	25.92	11.03

Simulation results

Period of Study 1997 – 2004

- Simulation time Step Daily
- Calibration/verification in the process not yet done
- Simulation of results using nearly physical characteristic parameter
- Typical results are given for Dire, Legedadi and Gefersa catchments
- Can't model downstream without proper consideration of the reservoirs

Simulation results

limitations

- Due to the reservoirs are not considered, the peak discharge is not properly simulated
- The volume of water available annually is perfectly matching
- Calibration of each sub-catchment is difficult due to only observed Q data is available at on site – Big Akaki

Acknowledgement

- Dr. Solomon seyoum
- Who has assisted me in running the RegCM₃ regional model
- Other colleagues of mine from department of civil engineering and IWMI colleagues