URAdapt

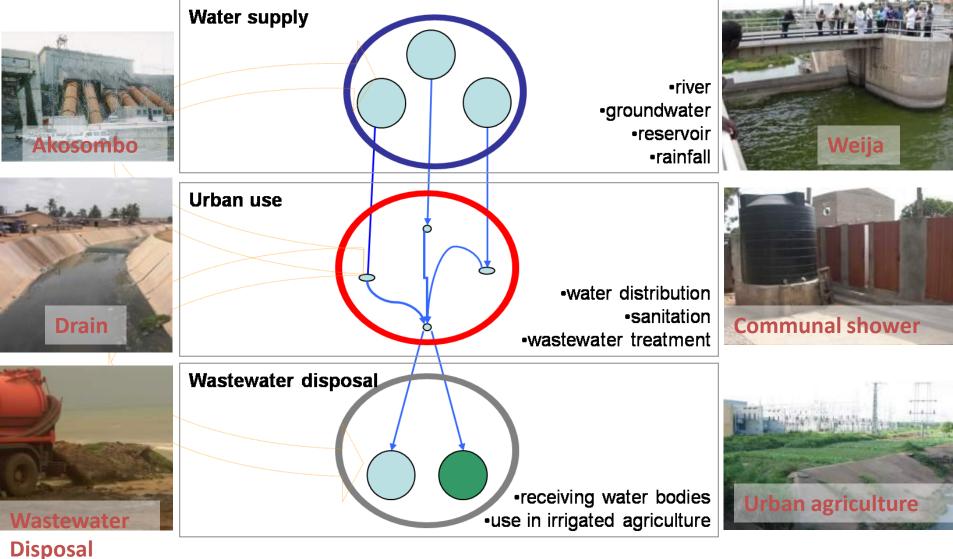
Managing Water at the Urban-Rural Interface: The key to climate change resilient cities

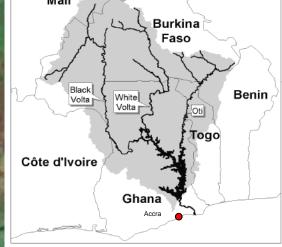
VENSIM Systems modelling and scenario analysis for science based city planning


Daniel Van Rooijen (IWMI)

African Regent Hotel, 24 February 2010

Contents

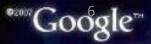

- Place in the URAdapt project
- Accra urban water system
- Impacts climate change on urban water balance
- Scenarios in relation to the working of the model
- Model properties
- Outputs
- Planning of activities


Objectives

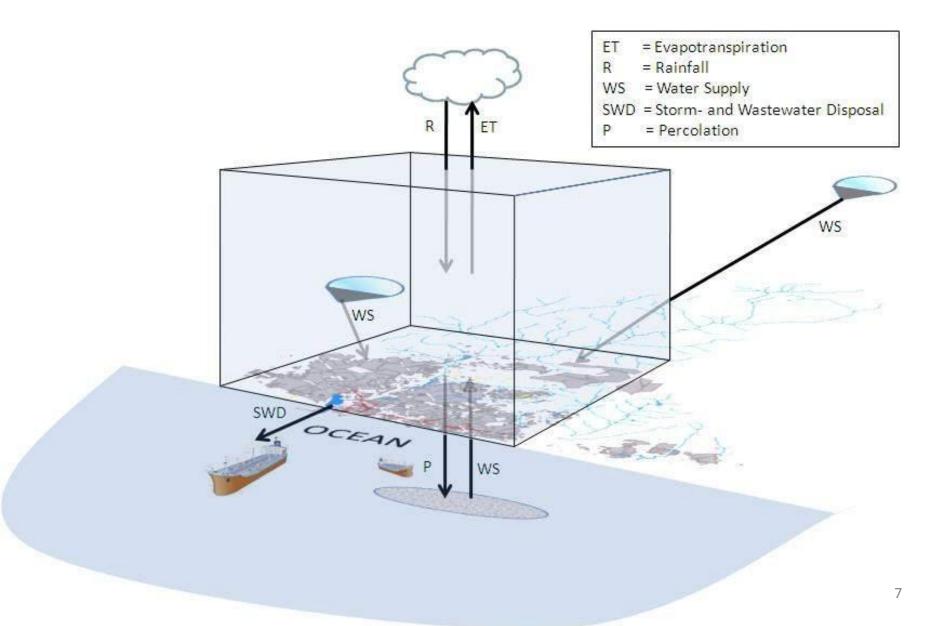
- To generate needed knowledge and deeper understanding of urban water system and vulnerability
- To process demographic and water supply and demand scenarios
- To rationalize the discussion on climate change risks
- To provide decision support

Accra Urban Water System. What water are we talking about?

Sources of Water Supply to Accra


Weija

ACCRA URBAN AREA


Volta

Accra, Ghana

Image © 2007 TerraMetrics

Impacts Climate Change on Urban Water Balance

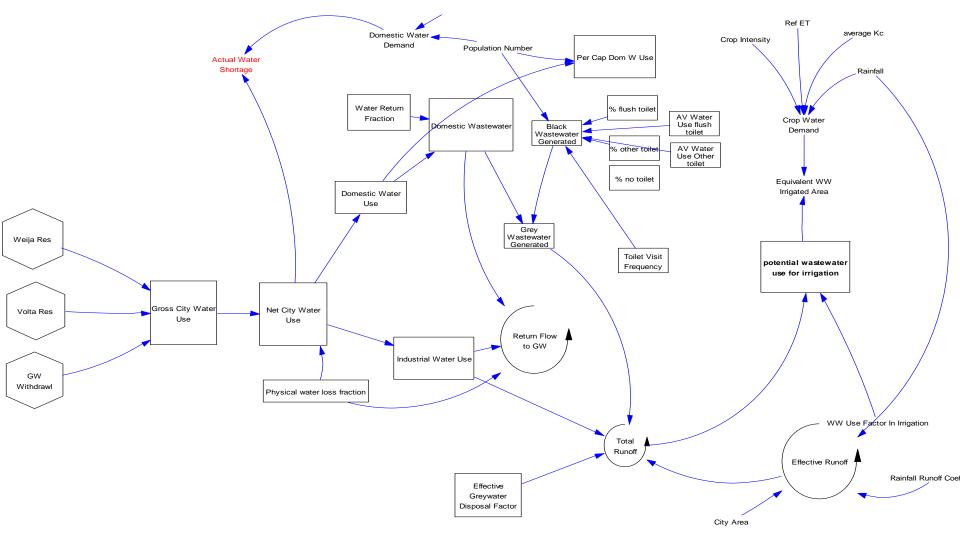
CC impact scenarios in relation to the working of the model

<u>CC Scenario</u>: Rainfall events becoming more intense and frequent (city level)

<u>Impact</u>: More severe and frequent flooding in urban areas. Increased health risk due to mixing with untreated domestic wastewater.

<u>Modeling results that can help develop adaptation</u> <u>strategies</u>:

- Improving drainage system will reduce flood volume by X% (government)
- X% potential flood reduction through rooftop water harvesting (households)
- X% storm water reduction by increasing fraction green areas in the city, to improving infiltration (government)


<u>CC Scenario</u>: Dry periods becoming more severe (drier) and recurring more often (catchment level)

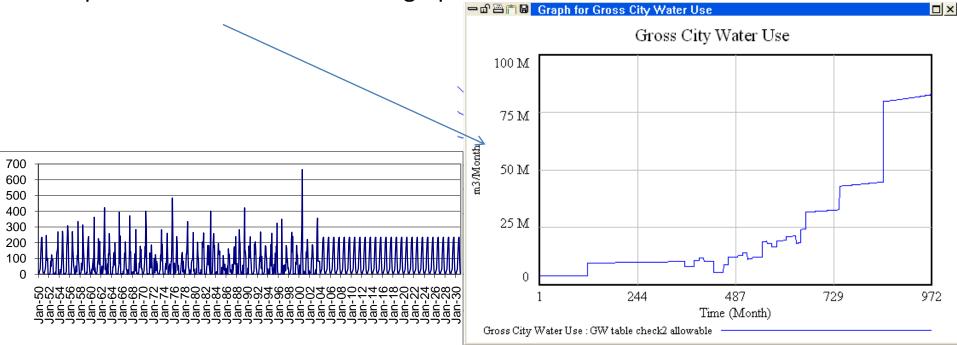
<u>Impact</u>: Low water availability for all water use sectors.Reduced urban water supply.

<u>Modeling results that can help developing adaptation</u> <u>strategies:</u>

- Potentially X% of rainwater saved through rooftop rainwater harvesting (household)
- Shift X% of water use to more reliance on groundwater (city)
- Reduce physical losses by X% (utility)

VENSIM Model structure

Van Rooijen et al 2005

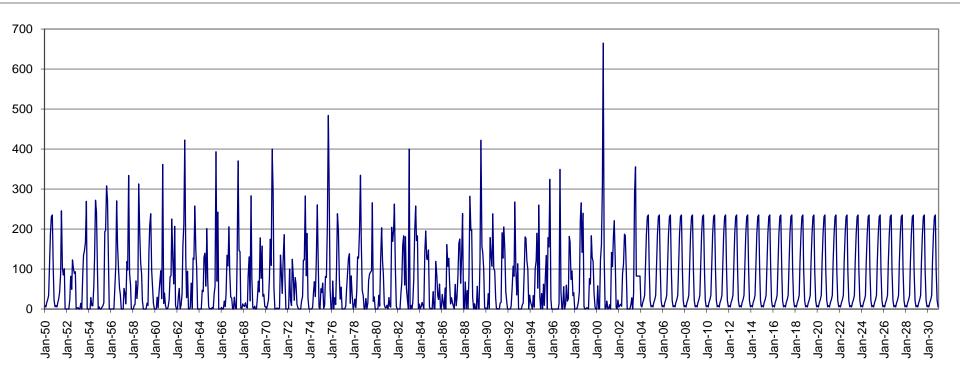

Model properties

- Visualization of relationships between parameters and variables
- With each time step parameters can change; you can play with them..
 - You can explore and better understand interaction between system components
- Sensitivity analysis easy to do.
- Automatic generation of:
 - Parameters (with units)
 - Equations
- Error messages when units are not compatible, when values become unrealistic during modeling, etc.

Working of the model

Input

- System Dynamics
- No feedback loops applied this is 'one flow through'
- Time series data input (ET, Rainfall, water supply etc)
- Outputs as xls format or VENSIM graphs


Output

В

Barbay
Barbay
Barbay

Barbay
<

Time series input data: Monthly rainfall, historic and future scenarios.

Model Parameters

(01)	Area= 200		Units: km2		
(02)	"Area irrigated (base case)"=40000 Units: ha				
(03)	"Av. Irr. Inflow Rate"=Irr Gross Diversion Rate / (30 * 24 * 3600) Units: m3/s				
(04)	Catchment area=1000		Units: km2		
(05)	Change GW Elevation=Change GW Storage / (GW Area * 10^6) / Storage Potential Factor		Units: m		
(06)	Change GW Storage=	Natural Yield - GW Withdrawl + Irr Return Flow to GW	Units: m3/month		
(07)	Crop Intensity=	80	Units: percent		
(08)	Demand Factor=	0.8	Units: (x/y)		
(09)	demandperCap=200		Units: I/day		
(10)) Domestic Water Demand=Population Number * demandperCap * 30/1000		Units: m3/month		
(11)	Domestic WW Return=	Units: m3/month			
(12)	Equivalent Area WW Irrigated=Net WW supply / ("Irr. Demand" / ("Area irrigated (base case)" * Crop Intensity / 100)) Units: ha				
(13)	ETref= 5		Units: mm/day		
(15)	GW Area=200		Units: km2		
(16)	GW Recovery Factor=0.	3	Units: (x/y)		
(17)	GW Withdrawl=Domestic Water Demand + Industrial Demand + Irr Gross Diversion Rate - Water harvested in Catchment Area Units: m3/month				
(18)	Industrial Demand= INTEG (Industrial Demand * Industry Growth Rate, Industrial Demand Base Case) Units: m3/month				
(19)	Industrial Demand Base Case=5e+006		Units: m3/month		
(20)	Industrial WW Return=0.65 * Industrial Demand		Units: m3/month		
(21)	Industry Growth Rate=0.01 Units: growth/Year				
(22)	"Infiltration + Percolation	on Factor"=0.125	Units: (x/x) 14		

Model Parameters Cont'd

(23) INITIAL TIME = 0	Units: Year The initial time for the simulation.				
(24) Irr Gross Diversion Rate=	Demand Factor / "Irr. Efficiency" * "Irr. Demand"	Units: m3/month			
(25) Irr Return Flow to GW=(1 - "Irr. Efficie	Irr Return Flow to GW=(1 - "Irr. Efficiency") * Irr Gross Diversion Rate * GW Recovery Factor U				
(26) "Irr. Demand"=(ETref - (Rainfall/30 * ("Irr. Demand"=(ETref - (Rainfall/30 * 0.7)) * Kc * 10 * "Area irrigated (base case)" * (Crop Intensity/100) * 30 *10				
(27) "Irr. Efficiency"= 0.65		Units: percentage			
(28) Kc=1		Units: x			
(29) Natural Yield=(Rainfall/1000) * (Area	(10^6) * "Infiltration + Percolation Factor"	Units: m3/month			
(30) Net WW supply=Domestic WW Return	n * Use Factor Domestic WW + Industrial WW Return * Use Factor Indus	strial WW Units: 3/month			
(31) Population Growth Rate=	0.05	Units: growth/Year			
(32) Population Number= INTEG (Population	on Number * Population Growth Rate, Population number Base Case)	Units: number			
(33) Population number Base Case=1.5e+	Population number Base Case=1.5e+006				
(34) Projected Treatment= 0.3		Units: percent			
(35) Rainfall=200		Units: mm/month			
(36) "Runoff factor R/O"= 0.22		Units: (x/y)			
(37) SAVEPER = TIME ST	SAVEPER = TIME STEP Units: Year [0,?] The frequency with which output is stored.				
(38) Storage Potential Factor=	0.05	Units: (x/y)			
(39) Surface Recovery Factor=	0.4	Units: (x/y)			
(40) Surface Return Flow= (1-"Irr. Efficie	ncy") * Irr Gross Diversion Rate * Surface Recovery Factor	Units: m3/month.			
(42) Urban Water Use= Domestic Wa	ter Demand + Industrial Demand	Units: m3/month			
(43) Use Factor Domestic WW=	0.9	Units: (x/y)			
(44) Use Factor Industrial WW=	0.5	Units: (x/y)			
(45) Water harvested in Catchment Area=	Catchment area * Rainfall * "Runoff factor R/O" * 1000	Units: m3/month			

Outputs for the project

- Database
- Scenarios
- Impact assessment (through modeling)
- Urban Water model (part of decision support)

Planning of WP2 Activities

- Inventory of available climatic and hydrologic models (properties and usefulness).
- Define main scenario types.
- Data collection: climatic data generated from downscaled climate scenario results
- Data collection: demographic data and urban water system
- VENSIM model set-up
- Data analysis and modelling of scenarios
- Generating and incorporating input and feedback from platform
- Finalize scenarios and modelling in collaboration with stakeholders

